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The Situation  
Munich Re is an insurance company combining primary insurance and reinsurance. It operates in all lines 
of insurance, with headquarters based in Munich, Germany and with almost 45,000 employees 
throughout the world. With premium income of around €28bn from reinsurance alone and with 
approximately 11,000 employees worldwide in reinsurance, it is one of the world’s leading reinsurers.  
 
In the last decade, Germany has experienced a shortage of testers and developers in application 
development. The skill shortage is expected to become more critical in the future. That is why senior 
management at the company’s application development function for reinsurance decided to prepare 
the organization for a high level of outsourcing and offshoring in this area. In 2008, the function 
reorganized for better collaboration with its outsourcing partners. 
 
After two years of working this way, the internal staff and the suppliers’ staff realized that they 
misjudged how well they could work together. That year, the IT function for reinsurance at Munich Re 
came to the conclusion that it required a new way of developing applications.  
 
A main objective was to define a standard lifecycle as a blueprint for a “healthy” project. The challenge, 
however, was that there was no common language that allowed the internal staff and its outsourcing 
partners to characterize the “healthiness” of a project. Participants used different approaches and 
different terms or even the same terms but with different meanings. As Burkhard Perkens-Golomb, IT 
Architect, Munich Re, stated, “My colleagues and I could sense the healthiness of a project, but we 
couldn’t describe it.”  
 
Initially, Munich Re tried to describe a project’s lifecycle based on artifacts from previous projects. 
However, there were a few pitfalls from this approach. For one thing, it was possible to run projects 
successfully with different sets of artifacts (i.e. a use case during one project, feature lists during 
another, etc.). Another pitfall was that documents can have varying degrees of details making uniformity 
difficult. Finally, there was no common understanding of the artifacts themselves.  For example, team 
members asked what a use case was and attempted to define the difference among test strategy, test 
concept, test plans and master test plans.  At the same time, the outsourcing agile approach lacked 
efficiency and transparency.  
 
A new standardized process was needed to establish a common way of working for the 500s FTEs from 
the company’s different countries and subsidiaries as well as the 500 FTEs working at the outsourcing 
firms.  Although every member on both sides had a clear understanding of what the process should be, 
they struggled to communicate their ideas in an easily understood way. It became evident that what 
was lacking was a common language to express the concept of a “healthy” process. 
 
And the new process had to be sustainable for the company’s many products and projects consuming a 
budget of about 240 million euros per year. 



 
At this point, Munich Re reached out for external help to overcome this situation and engaged Ivar 
Jacobson International (IJI), a global services company that provides consulting, coaching and training 
solutions for customers implementing enterprise-scale agile software development. Munich Re 
determined that the company needed a common view or a kernel to describe the specifics of each 
individual project. Therefore IJI introduced “ESSENCE” at Munich Re.  
 
The Solution 
After a series of workshops and discussions, the two groups had a breakthrough when IJI introduced the 
concepts and terminology of “ESSENCE – Kernel and Language for Software Engineering Methods” -- or 
“ESSENCE” for short. This standard was officially adopted by the OMG in June 2014. As a Platform-level 
member of the Object Management Group® (OMG®), IJI helped lead the effort to adopt the OMG 
ESSENCE standard.  
 
The ESSENCE kernel provides common ground for defining software development practices. This 
common ground includes essential elements that are universal in every software development effort 
(i.e. Requirements, Software System, Team, and Work) and includes a simple language for describing 
methods and practices. These elements have states representing progress and health, so as the project 
moves forward, the states associated with these elements progress. The kernel also helps practitioners 
compare methods since instead of comparing entire methods, they can now compare practices and 
make better decisions about their practices since decisions can be done for one practice at a time 
instead of for all practices within a method.  
 
According to the ESSENCE standard, software development is a multidimensional effort and work in all 
endeavors needs to progress in some proper way concurrently. In ESSENCE, progress in an endeavor is 
described by a kind of “health indictor” known in ESSENCE terminology as an “alpha.” There are seven 
such alphas (see Table 1). Each alpha can take a number of states and the state of an alpha tells how far 
the alpha has reached in the software development endeavor. These states describe collectively the 
status of the project and therefore characterize the overall progress and health of the project itself.  
 
Alphas were the key to Munich Re’s success in defining healthy projects. According to Perkens-Golomb, 
Munich Re needed a “lingua franca” or universal language that everyone could agree on to characterize 
the “healthy course” of a project. With the introduction of alphas, teams were able to verbally describe 
the lifecycle of a healthy project.  
 
Based on combinations of alpha values, Munich Re used the ESSENCE kernel to define three standard 
lifecycles for projects:  
1. Exploratory: for high-risk profile projects, new development where requirements and architecture are 
unstable or unknown quantities 
2. Standard: for medium-risk profile projects characteristic of projects making bigger changes to 
applications  
3. Small Enhancements: for low-risk profile projects, e.g. maintenance 
 
One of these lifecycles is assigned to a particular project based on its individual risk exposure.  
 
In addition to the lifecycles, the ESSENCE kernel was also used as a platform to describe practices. 
Munich Re introduced Use Case 2.0 and Iterative and Incremental Development practices from IJI. These 



practices were then aligned with the three standard lifecycles and allowed Munich Re to define 
responsibilities throughout the organization.  
 
Since then, the company has defined its own practices – all practices must be reusable in the three 
standard lifecycles.  
 
Moving Forward  
The OMG ESSENCE standard continues to play an important role at Munich Re for several reasons:  it 
guarantees consistency across the board for all software development projects; it helps create a learning 
organization by providing a solid basis and framework for the discussion and integration of learning; it 
helps the teams in their daily work to measure progress and health; and it helps Munich Re in scaling 
agile.  
 
Furthermore, ESSENCE provides the concept of practices as a tool to describe a way of working with 
more precision. Munich Re introduced practices from 3rd party vendors and documented the way of 
working in company-specific areas with their own practices. The practices then get assembled to 
construct the ways of working for the endeavors. 
 
Overall, ESSENCE provided great benefits for discussing and defining the way of working on a high level 
and on a detailed level within the application development department of Munich Re.  
 
As an OMG standard, ESSENCE is freely available to the public and can be downloaded at: 
http://www.omg.org/spec/Essence/. A more detailed write-up of the case study on Munich Re and 
ESSENCE can be found here at the Ivar Jacobson website.  
 
Alpha Description State Values 

Stakeholders The people, groups, or organizations who 

affect or are affected by a software system. 

Recognized  Represented  Involved 

 In Agreement  Satisfied for 

Deployment  Satisfied in Use 

Opportunity The set of circumstances that makes it 

appropriate to develop or change a software 

system. 

Identified  Solution Needed  Value 

Established  Viable, Addressed  

Benefit Accrued 

Requirements What the software system must do to 

address the opportunity and satisfy the 

stakeholders. 

Conceived  Bounded  Coherent  

Acceptable  Addressed  Fulfilled 

Software 

System 

A system made up of software hardware, 

and data that provides its primary value by 

the execution of the software. 

Architecture Selected  Demonstrable 

 Usable  Ready  Operational  

Retired 

Team The group of people actively engaged in the 

development, maintenance, delivery and 

support of a specific software system. 

Seeded  Formed  Collaborating  

Performing  Adjourned 

Work Activity involving mental or physical effort 

done in order to achieve a result. 

Initiated  Prepared  Started  

Under Control  Concluded  Closed 

http://www.omg.org/spec/Essence/
http://www.ivarjacobson.com/resource.aspx?id=2498


Way-of-

Working 

The tailored set of practices and tools used 

by a team to guide and support their work. 

Principles Established  Foundation 

Established  In Use  In Place  

Working Well  Retired 

Table 1 shows Seven Universal Alphas with Their Descriptions and State Values. ESSENCE provides 
detailed checklists for the description of the state values. 


