

Munich Re and ESSENCE – Kernel and Language for Software
Engineering Methods: A Case Study

By Ann McDonough, Marketing Communications Specialist, Object Management Group®

The Situation
Munich Re is an insurance company combining primary insurance and reinsurance. It operates in all lines
of insurance, with headquarters based in Munich, Germany and with almost 45,000 employees
throughout the world. With premium income of around €28bn from reinsurance alone and with
approximately 11,000 employees worldwide in reinsurance, it is one of the world’s leading reinsurers.

In the last decade, Germany has experienced a shortage of testers and developers in application
development. The skill shortage is expected to become more critical in the future. That is why senior
management at the company’s application development function for reinsurance decided to prepare
the organization for a high level of outsourcing and offshoring in this area. In 2008, the function
reorganized for better collaboration with its outsourcing partners.

After two years of working this way, the internal staff and the suppliers’ staff realized that they
misjudged how well they could work together. That year, the IT function for reinsurance at Munich Re
came to the conclusion that it required a new way of developing applications.

A main objective was to define a standard lifecycle as a blueprint for a “healthy” project. The challenge,
however, was that there was no common language that allowed the internal staff and its outsourcing
partners to characterize the “healthiness” of a project. Participants used different approaches and
different terms or even the same terms but with different meanings. As Burkhard Perkens-Golomb, IT
Architect, Munich Re, stated, “My colleagues and I could sense the healthiness of a project, but we
couldn’t describe it.”

Initially, Munich Re tried to describe a project’s lifecycle based on artifacts from previous projects.
However, there were a few pitfalls from this approach. For one thing, it was possible to run projects
successfully with different sets of artifacts (i.e. a use case during one project, feature lists during
another, etc.). Another pitfall was that documents can have varying degrees of details making uniformity
difficult. Finally, there was no common understanding of the artifacts themselves. For example, team
members asked what a use case was and attempted to define the difference among test strategy, test
concept, test plans and master test plans. At the same time, the outsourcing agile approach lacked
efficiency and transparency.

A new standardized process was needed to establish a common way of working for the 500s FTEs from
the company’s different countries and subsidiaries as well as the 500 FTEs working at the outsourcing
firms. Although every member on both sides had a clear understanding of what the process should be,
they struggled to communicate their ideas in an easily understood way. It became evident that what
was lacking was a common language to express the concept of a “healthy” process.

And the new process had to be sustainable for the company’s many products and projects consuming a
budget of about 240 million euros per year.

At this point, Munich Re reached out for external help to overcome this situation and engaged Ivar
Jacobson International (IJI), a global services company that provides consulting, coaching and training
solutions for customers implementing enterprise-scale agile software development. Munich Re
determined that the company needed a common view or a kernel to describe the specifics of each
individual project. Therefore IJI introduced “ESSENCE” at Munich Re.

The Solution
After a series of workshops and discussions, the two groups had a breakthrough when IJI introduced the
concepts and terminology of “ESSENCE – Kernel and Language for Software Engineering Methods” -- or
“ESSENCE” for short. This standard was officially adopted by the OMG in June 2014. As a Platform-level
member of the Object Management Group® (OMG®), IJI helped lead the effort to adopt the OMG
ESSENCE standard.

The ESSENCE kernel provides common ground for defining software development practices. This
common ground includes essential elements that are universal in every software development effort
(i.e. Requirements, Software System, Team, and Work) and includes a simple language for describing
methods and practices. These elements have states representing progress and health, so as the project
moves forward, the states associated with these elements progress. The kernel also helps practitioners
compare methods since instead of comparing entire methods, they can now compare practices and
make better decisions about their practices since decisions can be done for one practice at a time
instead of for all practices within a method.

According to the ESSENCE standard, software development is a multidimensional effort and work in all
endeavors needs to progress in some proper way concurrently. In ESSENCE, progress in an endeavor is
described by a kind of “health indictor” known in ESSENCE terminology as an “alpha.” There are seven
such alphas (see Table 1). Each alpha can take a number of states and the state of an alpha tells how far
the alpha has reached in the software development endeavor. These states describe collectively the
status of the project and therefore characterize the overall progress and health of the project itself.

Alphas were the key to Munich Re’s success in defining healthy projects. According to Perkens-Golomb,
Munich Re needed a “lingua franca” or universal language that everyone could agree on to characterize
the “healthy course” of a project. With the introduction of alphas, teams were able to verbally describe
the lifecycle of a healthy project.

Based on combinations of alpha values, Munich Re used the ESSENCE kernel to define three standard
lifecycles for projects:
1. Exploratory: for high-risk profile projects, new development where requirements and architecture are
unstable or unknown quantities
2. Standard: for medium-risk profile projects characteristic of projects making bigger changes to
applications
3. Small Enhancements: for low-risk profile projects, e.g. maintenance

One of these lifecycles is assigned to a particular project based on its individual risk exposure.

In addition to the lifecycles, the ESSENCE kernel was also used as a platform to describe practices.
Munich Re introduced Use Case 2.0 and Iterative and Incremental Development practices from IJI. These

practices were then aligned with the three standard lifecycles and allowed Munich Re to define
responsibilities throughout the organization.

Since then, the company has defined its own practices – all practices must be reusable in the three
standard lifecycles.

Moving Forward
The OMG ESSENCE standard continues to play an important role at Munich Re for several reasons: it
guarantees consistency across the board for all software development projects; it helps create a learning
organization by providing a solid basis and framework for the discussion and integration of learning; it
helps the teams in their daily work to measure progress and health; and it helps Munich Re in scaling
agile.

Furthermore, ESSENCE provides the concept of practices as a tool to describe a way of working with
more precision. Munich Re introduced practices from 3rd party vendors and documented the way of
working in company-specific areas with their own practices. The practices then get assembled to
construct the ways of working for the endeavors.

Overall, ESSENCE provided great benefits for discussing and defining the way of working on a high level
and on a detailed level within the application development department of Munich Re.

As an OMG standard, ESSENCE is freely available to the public and can be downloaded at:
http://www.omg.org/spec/Essence/. A more detailed write-up of the case study on Munich Re and
ESSENCE can be found here at the Ivar Jacobson website.

Alpha Description State Values

Stakeholders The people, groups, or organizations who

affect or are affected by a software system.

Recognized  Represented  Involved

 In Agreement  Satisfied for

Deployment  Satisfied in Use

Opportunity The set of circumstances that makes it

appropriate to develop or change a software

system.

Identified  Solution Needed  Value

Established  Viable, Addressed 

Benefit Accrued

Requirements What the software system must do to

address the opportunity and satisfy the

stakeholders.

Conceived  Bounded  Coherent 

Acceptable  Addressed  Fulfilled

Software

System

A system made up of software hardware,

and data that provides its primary value by

the execution of the software.

Architecture Selected  Demonstrable

 Usable  Ready  Operational 

Retired

Team The group of people actively engaged in the

development, maintenance, delivery and

support of a specific software system.

Seeded  Formed  Collaborating 

Performing  Adjourned

Work Activity involving mental or physical effort

done in order to achieve a result.

Initiated  Prepared  Started 

Under Control  Concluded  Closed

http://www.omg.org/spec/Essence/
http://www.ivarjacobson.com/resource.aspx?id=2498

Way-of-

Working

The tailored set of practices and tools used

by a team to guide and support their work.

Principles Established  Foundation

Established  In Use  In Place 

Working Well  Retired

Table 1 shows Seven Universal Alphas with Their Descriptions and State Values. ESSENCE provides
detailed checklists for the description of the state values.

